Energy Transfer in Ce0.85Tb0.15F3 Nanoparticles-CTAB Shell-Chlorin e6 System

نویسندگان

  • Mykhaylo Yu. Losytskyy
  • Liliia V. Kuzmenko
  • Oleksandr B. Shcherbakov
  • Nikolai F. Gamaleia
  • Andrii I. Marynin
  • Valeriy M. Yashchuk
چکیده

Formation and electronic excitation energy transfer process in the nanosystem consisting of Ce0.85Tb0.15F3 nanoparticles, cetrimonium bromide (CTAB) surfactant, and chlorin e6 photosensitizer were studied. It was shown that chlorin e6 molecules bind to Ce0.85Tb0.15F3 NP in the presence of CTAB forming thus Ce0.85Tb0.15F3 NP-CTAB-chlorin e6 nanosystem. We consider that binding occurs via chlorin e6 embedding in the shell of CTAB molecules, formed around NP. In the Ce0.85Tb0.15F3 NP-CTAB-chlorin e6 nanosystem, electronic excitation energy transfer from Ce3+ to chlorin e6 takes place both directly (with the 0.33 efficiency for 2 μM chlorin e6) and via Tb3+.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoluminescence of cerium fluoride and cerium-doped lanthanum fluoride nanoparticles and investigation of energy transfer to photosensitizer molecules.

CexLa1-xF3 nanoparticles have been proposed for use in nanoscintillator-photosensitizer systems, where excitation of nanoparticles by ionizing radiation would result in energy transfer to photosensitizer molecules, effectively combining the effects of radiotherapy and photodynamic therapy. Thus far, there have been few experimental investigations of such systems. This study reports novel synthe...

متن کامل

A core-shell-shell nanoplatform upconverting near-infrared light at 808 nm for luminescence imaging and photodynamic therapy of cancer

Upconversion nanoparticles (UCNPs) have been extensively explored for photodynamic therapy (PDT) and imaging due to their representative large anti-Stokes shifts, deep penetration into biological tissues, narrow emission bands, and high spatial-temporal resolution. Conventional UCNP-based PDT system, however, utilizes exitation at 980 nm, at which water has significant absorption, leading to a ...

متن کامل

Energy transfer in complexes of water-soluble quantum dots and chlorin e6 molecules in different environments

The photoexcitation energy transfer is found and investigated in complexes of CdSe/ZnS cationic quantum dots and chlorin e6 molecules formed by covalent bonding and electrostatic interaction in aqueous solution and in porous track membranes. The quantum dots and chlorin e6 molecules form stable complexes that exhibit Förster resonance energy transfer (FRET) from quantum dots to chlorin e6 regar...

متن کامل

Comparison of a new nanoform of the photosensitizer chlorin e6, based on plant phospholipids, with its free form

Photodynamic therapy is an advanced method of treating cancer and various benign diseases, including infections. It uses light-activated molecules [photosensitizers (PSs)] to generate reactive oxygen species (ROS) when irradiated with light of a specific wavelength. This study examined the photophysical and photosensitizing activity of the PS chlorin e6 incorporated in a delivery system based o...

متن کامل

Lanthanum fluoride nanoparticles for radiosensitization of tumors

Dense inorganic nanoparticles have recently been identified as promising radiosensitizers. In addition to dose enhancement through increased attenuation of ionizing radiation relative to biological tissue, scintillating nanoparticles can transfer energy to coupled photosensitizers to amplify production of reactive oxygen species, as well as provide UVvisible emission for optical imaging. Lantha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017